Julia Lines of General Random Dirichlet Series

نویسندگان

  • Qiyu Jin
  • Guantie Deng
  • Daochun Sun
چکیده

In this paper, we consider a random entire function f(s, ω) defined by a random Dirichlet series ∑∞ n=1Xn(ω)e −λns whereXn are independent and complex valued variables, 0 6 λn ր +∞. We prove that under natural conditions, for some random entire functions of order (R) zero f(s, ω) almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J. R.Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of Xn for such function f(s, ω) of order (R) zero, almost surely.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

Relative order and type of entire functions represented by Banach valued Dirichlet series in two variables

In this paper, we introduce the idea of relative order and type of entire functions represented by Banach valued Dirichlet series of two complex variables to generalize some earlier results. Proving some preliminary theorems on the relative order, we obtain sum and product theorems and we show that the relative order of an entire function represented by Dirichlet series is the same as that of i...

متن کامل

Generalized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series

In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.

متن کامل

On Some Results in the Light of Generalized Relative Ritt Order of Entire Functions Represented by Vector Valued Dirichlet Series

In this paper, we study some growth properties of entire functions represented by a vector valued Dirichlet series on the basis of generalized relative Ritt order and generalized relative Ritt lower order.

متن کامل

Values of Entire Functions Represented by Gap Dirichlet Series

Introduction. In two previous notes [9],1 I stated some results which, in a general way, may be expressed as follows: If the Taylor series which represents an entire function satisfies a certain gap condition (which depends only on the order of F(z)), the zeros of F(z) —f(z) are not exceptional with respect to the proximate order of F(z) by any meromorphic function f(z) ^ w of lower order. On t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016